1,119 research outputs found

    Regional perspectives on office service accessibility in Finnish banking markets: are there differences in service accessibility between the regions?

    Get PDF
    In Finland there was huge reduction in number of bank branches during the 1990?s which seems to be stabilized during last few years and even some new bank branches has been founded. In this paper I analyze the locations of bank branches in Finland by using municipality level data containing both economic and geographic variables. At first I analyze banks? entry/exit by the area-basis. Then the concentration in analysis moves to branch network strategies of bank groups, i.e. what is the typical office network strategy of centrally managed bank groups and how bank groups with decentralized decision-making differ from that, and what are the geographic core market areas of the bank groups. At last the differences in bank office service availability between Finnish provinces is analyzed in the light of previous results. Data used in analysis is panel containing bank branch numbers for each bank group in municipality, and population, geographic and economic features of municipalities in years 1995, 1997, 1999 and 2001.

    Energies of B_s meson excited states - a lattice study

    Full text link
    This is a follow-up to our earlier work on the energies and radial distributions of heavy-light mesons. The heavy quark is taken to be static (infinitely heavy) and the light quark has a mass about that of the strange quark. We now concentrate on the energies of the excited states with higher angular momentum and with a radial node. A new improvement is the use of hypercubic blocking in the time direction. The calculation is carried out with dynamical fermions on a 16 cubed times 32 lattice with a lattice spacing approximately 0.1 fm generated using a non-perturbatively improved clover action. In nature the closest equivalent of this heavy-light system is the B_s meson, which allows us to compare our lattice calculations to experimental results (where available) or to give a prediction where the excited states, particularly P-wave states, should lie. We pay special attention to the spin-orbit splitting, to see which one of the states (for a given angular momentum L) has the lower energy. An attempt is made to understand these results in terms of the Dirac equation.Comment: 35 pages. v3: Data from two new lattices added. New results in several chapter

    Instability and wavelength selection during step flow growth of metal surfaces vicinal to fcc(001)

    Get PDF
    We study the onset and development of ledge instabilities during growth of vicinal metal surfaces using kinetic Monte Carlo simulations. We observe the formation of periodic patterns at [110] close packed step edges on surfaces vicinal to fcc(001) under realistic molecular beam epitaxy conditions. The corresponding wavelength and its temperature dependence are studied by monitoring the autocorrelation function for step edge position. Simulations suggest that the ledge instability on fcc(1,1,m) vicinal surfaces is controlled by the strong kink Ehrlich-Schwoebel barrier, with the wavelength determined by dimer nucleation at the step edge. Our results are in agreement with recent continuum theoretical predictions, and experiments on Cu(1,1,17) vicinal surfaces.Comment: 4 pages, 4 figures, RevTe

    Population imbalanced fermions in harmonically trapped optical lattices

    Full text link
    The attractive Fermi-Hubbard Hamiltonian is solved via the Bogoliubov-de Gennes formalism to analyze the ground state phases of population imbalanced fermion mixtures in harmonically trapped two-dimensional optical lattices. In the low density limit the superfluid order parameter modulates in the radial direction towards the trap edges to accommodate the unpaired fermions that are pushed away from the trap center with a single peak in their density. However in the high density limit while the order parameter modulates in the radial direction towards the trap center for low imbalance, it also modulates towards the trap edges with increasing imbalance until the superfluid to normal phase transition occurs beyond a critical imbalance. This leads to a single peak in the density of unpaired fermions for low and high imbalance but leads to double peaks for intermediate imbalance.Comment: 4 pages with 4 figures, accepted to appear in PR

    D to K and D to pi semileptonic form factors from Lattice QCD

    Get PDF
    We present a very high statistics study of D and D_s semileptonic decay form factors on the lattice. We work with MILC N_f=2+1 lattices and use the Highly Improved Staggered Quark action (HISQ) for both the charm and the strange and light valence quarks. We use both scalar and vector currents to determine the form factors f_0(q^2) and f_+(q^2) for a range of D and D_s semileptonic decays, including D to pi and D to K. By using a phased boundary condition we are able to tune accurately to q^2=0 and explore the whole q^2 range allowed by kinematics. We can thus compare the shape in q^2 to that from experiment and extract the CKM matrix element |V_cs|. We show that the form factors are insensitive to the spectator quark: D to K and D_s to eta_s form factors are essentially the same, which is also true for D to pi and D_s to K within 5%. This has important implications when considering the corresponding B/B_s processes.Comment: To appear in the proceedings of The 5th International Workshop on Charm Physics (Charm 2012

    Usage of Terms “Science” and “Scientific Knowledge” in Nature of Science (NOS): Do Their Lexicons in Different Accounts Indicate Shared Conceptions?

    Get PDF
    Nature of science (NOS) has been a central theme in science education and research on it for nearly three decades, but there is still debate on its proper focus and underpinnings. The focal points of these debates revolve around different ways of understanding the terms “science” and “scientific knowledge”. It is suggested here that the lack of agreement is at least partially related to and reflected as a lack of common vocabulary and terminology that would provide a shared basis for finding consensus. Consequently, the present study seeks motivation from the notions of centrality of lexicons in recognizing the identity of disciplinary communities and different schools of thought within NOS. Here, by using a network approach, we investigate how lexicons used by different authors to discuss NOS are confluent or divergent. The lexicons used in these texts are investigated on the basis of a network analysis. The results of the analysis reveal clear differences in the lexicons that are partially related to differences in views, as evident from the debates surrounding the consensus NOS. The most divergent views are related to epistemology, while regarding the practices and social embeddedness of science the lexicons overlap significantly. This suggests that, in consensus NOS, one can find much basis for converging views, with common understanding, where constructive communication may be possible. The basic vocabulary, in the form of a lexicon, can reveal much about the different stances and the differences and similarities between various disciplinary schools. The advantage of such an approach is its neutrality and how it keeps a distance from preferred epistemological positions and views of nature of knowledge

    Agent-Based Modeling of Consensus Group Formation with Complex Webs of Beliefs

    Get PDF
    Formation of consensus groups with shared opinions or views is a common feature of human social life and also a well-known phenomenon in cases when views are complex, as in the case of the formation of scholarly disciplines. In such cases, shared views are not simple sets of opinions but rather complex webs of beliefs (WoBs). Here, we approach such consensus group formation through the agent-based model (ABM). Agents’ views are described as complex, extensive web-like structures resembling semantic networks, i.e., webs of beliefs. In the ABM introduced here, the agents’ interactions and participation in sharing their views are dependent on the similarity of the agents’ webs of beliefs; the greater the similarity, the more likely the interaction and sharing of elements of WoBs. In interactions, the WoBs are altered when agents seek consensus and consensus groups are formed. The consensus group formation depends on the agents’ sensitivity to the similarity of their WoBs. If their sensitivity is low, only one large and diffuse group is formed, while with high sensitivity, many separated and segregated consensus groups emerge. To conclude, we discuss how such results resemble the formation of disciplinary, scholarly consensus groups

    Systemic States of Spreading Activation in Describing Associative Knowledge Networks: From Key Items to Relative Entropy Based Comparisons

    Get PDF
    Associative knowledge networks are central in many areas of learning and teaching. One key problem in evaluating and exploring such networks is to find out its key items (nodes), sub-structures (connected set of nodes), and how the roles of sub-structures can be compared. In this study, we suggest an approach for analyzing associative networks, so that analysis is based on spreading activation and systemic states that correpond to the state of spreading. The method is based on the construction of diffusion-propagators as generalized systemic states of the network, for an exploration of the connectivity of a network and, subsequently, on generalized Jensen–Shannon–Tsallis relative entropy (based on Tsallis-entropy) in order to compare the states. It is shown that the constructed systemic states provide a robust way to compare roles of sub-networks in spreading activation. The viability of the method is demonstrated by applying it to recently published network representations of students’ associative knowledge regarding the history of science

    Usage of Terms “Science” and “Scientific Knowledge” in Nature of Science (NOS): Do Their Lexicons in Different Accounts Indicate Shared Conceptions?

    Get PDF
    Nature of science (NOS) has been a central theme in science education and research on it for nearly three decades, but there is still debate on its proper focus and underpinnings. The focal points of these debates revolve around different ways of understanding the terms “science” and “scientific knowledge”. It is suggested here that the lack of agreement is at least partially related to and reflected as a lack of common vocabulary and terminology that would provide a shared basis for finding consensus. Consequently, the present study seeks motivation from the notions of centrality of lexicons in recognizing the identity of disciplinary communities and different schools of thought within NOS. Here, by using a network approach, we investigate how lexicons used by different authors to discuss NOS are confluent or divergent. The lexicons used in these texts are investigated on the basis of a network analysis. The results of the analysis reveal clear differences in the lexicons that are partially related to differences in views, as evident from the debates surrounding the consensus NOS. The most divergent views are related to epistemology, while regarding the practices and social embeddedness of science the lexicons overlap significantly. This suggests that, in consensus NOS, one can find much basis for converging views, with common understanding, where constructive communication may be possible. The basic vocabulary, in the form of a lexicon, can reveal much about the different stances and the differences and similarities between various disciplinary schools. The advantage of such an approach is its neutrality and how it keeps a distance from preferred epistemological positions and views of nature of knowledge
    • …
    corecore